

Balancing Accuracy and Wearability: Sensor Configuration Strategies for Real-World Near-Fall Detection

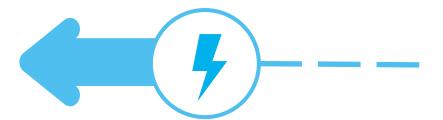
HEALTHY WORKPLACES SUMMIT 2025 SAFE AND HEALTHY WORK IN THE DIGITAL AGE

Moritz Schneider

Prevention of tripping, slipping and falling accidents – why?

Frequency

One in five accidents at work is a trip, slip or fall accident (STF) 2024: Total 164,912. Fatal 10. Pensions 2.374

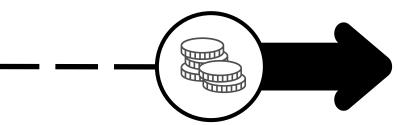


164.912

Strains Contusions Fractures

Economy

Total 2024: €292,26 million Rehab. costs: €290,20 million



Impacts

From painful injuries to long-term damage

292.26 M. €

Hierarchy of Prevention Measures and Role of Al

Slip, trip and fall prevention follows the established hierarchy of prevention measures, addressing STF risks at system level before targeting individual workers.

1

Substitution & Technical Measures

Safer flooring, improved walking surfaces and elimination of known slip and trip hazards in high-risk areas remain the primary prevention strategy.

2

Organisational Measures

Route and working hours planning, hazard recognition training and integration of perturbation-based training into existing prevention programmes.

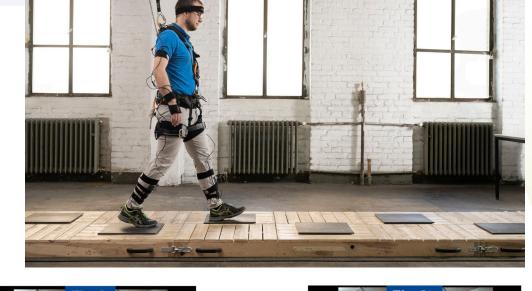
3

Personal Measures

Appropriate footwear, individual training and wearable sensors for near-fall detection as additional support, not substitutes for upstream prevention.

4

Al-Based Detection


OSH-driven tools that identify critical situations and inform collective preventive actions at workplace level, including targeted improvements of routes, surfaces and task design.

SLIP, TRIP, MISSTEP PARCOURS

Assessment of severity of stumbling before and after training

Full-body measurement sensors

Schneider, M., Reich, K., Hartmann, U., Hermanns, I., Kaufmann, M., Kluge, A., ... & Ellegast, R. (2024). Acquisition of Data on Kinematic Responses to Unpredictable Gait Perturbations: Collection and Quality Assurance of Data for Use in Machine Learning Algorithms for (Near-) Fall Detection. Sensors (Basel, Switzerland), 24(16), 5381.

Ellegast, R., Hartmann, U., Karamanidis, K., Kluge, A., Kaufmann, M., Krugmann, L., Schneider, M., Zimmermann, J., Lungfiel, A., Bohlscheid, A., Nickel, P., Schiefer, C., Hermanns-Truxius, I., Werth, J., & Weber, A.; "Final Report of the ENTRAPon Project: Development of Additional Training Ele-ments for the Prevention of Slip, Trip and Fall Accidents Supported by Virtual Reality and Mechanical Perturbation Training";

Worker and Workers' Council Involvement, Ethics and Human-Centred Study Design

Voluntary Participation

Steelworkers and parcel delivery workers recruited as active employees, fully informed in writing about study aims, procedures and risks.

Continuous Collaboration

Close partnership with company partners and ongoing involvement of workers' councils and OSH representatives in planning and risk assessment.

Real-world scenarios

Scenarios and walking speeds based on accident reports and real-world scenarios to ensure realism and acceptable workload

Transparent Communication

- Written informed consent from all participants
- Clear separation of research data from performance appraisal
- · Regular feedback opportunities for participants and councils

Data Protection by Design

- GDPR compliant pseudonymisation protocols
- · Restricted access to raw data
- Only aggregated results reported to companies and councils

PrevFall Dataset

110 Subjects

50% HKM

50%

Steelworker

Parcel delivery

~1 MILLION

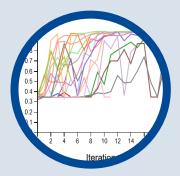
kinematic data points

~500 K

~500 K

Tripping, slipping and missteps Data points

Baseline walking data points


Schneider, M., Reich, K., Hartmann, U., Hermanns, I., Kaufmann, M., Kluge, A., ... & Ellegast, R. (2024). Acquisition of Data on Kinematic Responses to Unpredictable Gait Perturbations: Collection and Quality Assurance of Data for Use in Machine Learning Algorithms for (Near-) Fall Detection. Sensors (Basel, Switzerland), 24(16), 5381.

Healthy Workplaces

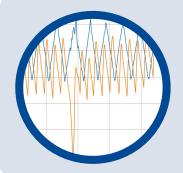
Automatic detection of near falls using Al

Neural Architecture Search

DeepConvLSTM

F1 91.95

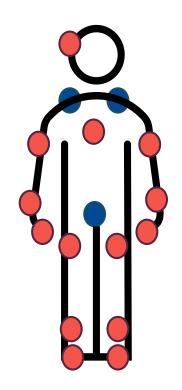
ResNet F1 95.31


CNN

F1 96.22

InceptionTime F1 96.32

LDA demonstrates class separability


No differences in linear correlation between and within classes

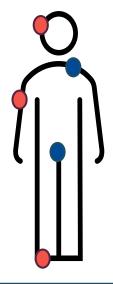
Healthy Workplaces

Schneider, M., Seeser-Reich, K., Fiedler, A., & Frese, U. (2025). Enhancing Slip, Trip, and Fall Prevention: Real-World Near-Fall Detection with Advanced Machine Learning Technique. Sensors (Basel, Switzerland), 25(5), 1468.

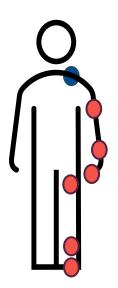
Objective: Minimal sensor configurations for STF detection

Complete sensor system achieves good results, but:

- expensive
- computationally intensive
- restricts movement in everyday working life
- time-consuming to set up


Three strategies for sensor reduction:

- Optimised coverage of anatomical regions
- II. Unilateral reduction
- III. Optimised coverage of critical regions



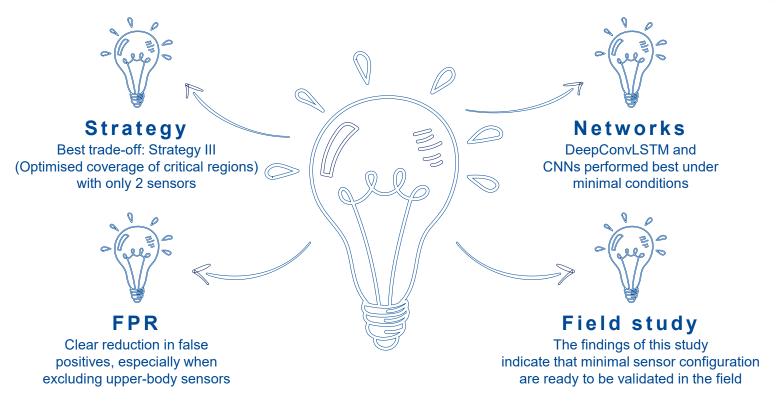
Three strategies for sensor reduction



Hypothesis:
One representative sensor
per region suffices to capture
essential motion patterns

Hypothesis:
One body side contains sufficient information for accurate classification.

Hypothesis:
Sensors on arms, head, and chest are less informative and can be removed.


Brief overview results

Strategie	# Sensoren	Sensorpositionen	Acc. (%)	Weighted F1-Score	FPR (%) vs. Full-Body*
I - Optimised coverage of anatomical regions	4	Head, Left Shoulder, Pelvis, Right Foot	86.97	0.910	10.59 (-32.33 %)
	3	Left Shoulder, Pelvis, Right Foot	83.73	0.880	_ \
	2	Pelvis, Right Foot	77.39	0.814	_
II - Single-sided reduction	4	Left Shoulder, Left Upper Arm, Left Forearm, Left Foot	82.94	0.871	15.68 (+0.19 %)
	3	Left Shoulder, Left Upper Arm, Left Foot	81.69	0.858	_
	2	Left Shoulder, Left Forearm	81.69	0.857	_
III -Optimised coverage of critical regions	4	Left Foot, Right Foot, Left Lower LegL, Right Lower Leg	84.51	0.889	1.52 (-90.29 %)
	3	Left Lower Leg, Right Lower Leg, Left Foot	82.78	0.874	_
	2	Left Lower Leg, Left Foot	84.59	0.889	_

Brief overview results – Key findings

Shaping Digital Tools Through OSH Principles

Prevention First

Prioritising systemic improvements over individual monitoring

Proportionality

Ensuring monitoring measures are appropriate and justified

Transparency

Clear communication about data use and system operation

Worker Consent

Voluntary participation with full informed agreement

Building Trust Through Design: By embedding OSH principles into AI systems for near-fall detection, organisations can strengthen trust, support ergonomics and psychosocial wellbeing, and contribute to safer and more sustainable digital workplaces.

Moritz Schneider

Team Leader "Data Science and Artificial Intelligence"
Head of Competence Centre for Artificial Intelligence and Big Data (KKI)
At Institute for Occupational Safety and Health (IFA) of the
German Social Accident Insurance (DGUV)

E-Mail: Moritz.Schneider@dguv.de